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A particle-reinforced composite material is a matrix with thermally conductive particles that has a
diverse range of applications from electronics to energy harvesting/storage systems. In the engineering
design of a particle-reinforced composite material for application, it is crucial to accurately and practi-
cally predict its effective thermal conductivity. Here, we report the development of a simple analytical
model for predictions with improved accuracy and applicability. Comprehensive evaluation of existing
models was first conducted to clarify their limitations in prediction accuracy and applicability to various
experimental conditions. To overcome the challenges of the existing models, our new model was derived
to consider the effect of shape, particle aggregation, and mutual interaction of particles on effective ther-
mal conductivity. Lattice Boltzmann simulations were conducted to obtain a quasi-universal coefficient
representing interactions of particles, whereas a shape coefficient characterizing microstructures of
aggregated particles was obtained from experimental data available from literature. As a result, our
model prediction outperformed the existing models in its prediction accuracy, and it could be applicable
to any experimental circumstances where previous model predictions are inappropriate to use.

� 2018 Elsevier Ltd. All rights reserved.
1. Introduction

Particle-reinforced composites, which consist of a matrix with
thermally conductive particles, have been widely used in a variety
of applications with their engineered thermal conductivities. For
example, polymer composites mixed with particles having a higher
thermal conductivity have been used in place of metallic compo-
nents in heat exchangers [1,2] and in fuel cells [3] due to their light
weight and enhanced thermal conductivity. Particularly in elec-
tronics application, thermally conductive but electrically insulating
particles have been added to insulating materials such as poly-
mers. These composites have been used as semiconductor device
packaging material or thermal interface material [4,5,16] and more
recently as a heat-dissipating component of flexible electronic
devices [6].

For this purpose, the particles are normally selected to have a
(100–1000 times) higher thermal conductivity than the matrix
material. For example, a polymer matrix having a thermal conduc-
tivity of 0.17–0.58W/m K was mixed with inorganic conductive
particles such as aluminum nitride with 150–220W/m K or boron
nitride with 29–300W/m K [7]. Since the heat-conduction perfor-
mance of such composites has been characterized by their effective
thermal conductivity, a priori prediction of the effective thermal
conductivity is a prerequisite for the efficient design of such
composites.

Since the late 19th century, a large number of analytical models
have been proposed to predict effective thermal conductivities for
a variety of composite structures. The table in Appendix A summa-
rizes the most popular models with their functional forms. Most of
the early models, classified as Group A in the table, describe the
effective thermal conductivity (keff) as a function of volume frac-
tion (vf) and thermal conductivity (kp) of particles as well as the
thermal conductivity of matrix (km). Although the three variables
vf, kp, and km are primary factors in determining keff, many sec-
ondary factors exist, such as shape, orientation, spatial distribu-
tion, and aggregation of particles, as well as contact resistance
(or Kapitza resistance) in between a particle and matrix [8]. Models
that belong to Group B consider the distribution effect of particles,
while models in Group C revolve around the morphology of non-
spherical particles. One model in Group D was developed to reflect
the orientation effect of non-spherical particles, while the factor of
contact resistance was not considered in this study (this will be
discussed in Section 3).
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Despite the relatively large number of previous models, such
former models have had limited success in the prediction of keff
with conditioned evaluation of their predictions. To our knowl-
edge, there is no report of comprehensive performance evaluations
of the previous models under various conditions. Thus, it is difficult
to know what the best model is under a given condition of interest,
for example, for enhancing heat dissipation. It is also noted that the
abovementioned secondary factors are closely interrelated, partic-
ularly when increasing the volume fraction of particles to attain
the required level of heat dissipation [8]. At high volume fractions,
initially spherical particles have more chance to form an elongated
aggregate that can be treated as a non-spherical particle with a
large aspect ratio, or mutual influence between particles becomes
significant as they get closer to each other. This complexity might
explain why these models have large discrepancies in the predic-
tion against experimental data (this will be discussed in Section 2).

More recently, various full numerical simulations have been
undertaken to estimate effective thermal conductivities for more
practical (complicated and large-scale) composite structures
[9–12]. Although these numerical methods are clearly helpful for
understanding microstructure-dependent heat conduction charac-
teristics, the methods are not likely to be suitable for more compli-
cated circumstances such as ash deposition in power plants [13]
and laser sintering of metallic powders in 3D printing [14,15].
The reason for this is that too large a calculation load is required
for the analysis of combined transient heat transfer between the
surrounding gas and the microporous composites. Conclusively, a
prediction model should be further simplified to reduce computa-
tional steps and time along with improved accuracy.

The first objective of this study is therefore to evaluate the pre-
vious analytical models with increasing kp/km and vf of particles,
targeting enhanced heat dissipation applications. The results
showed that most of the previous models had a similar trend in
the predictions of keff when increasing kp/km, and were reduced
to a single asymptotic functional form at the extreme condition
(kp/km ? 1). Secondly, based on this asymptotic behavior, a new
analytical model was derived to accommodate the secondary fac-
tors of shape, aggregation, and mutual interaction of particles in
addition to the primary factors, and further simplified by employ-
ing two semi-empirical coefficients. A Lattice Boltzmann simula-
tion was also performed to provide reliable data for ideal
composites, and its results were used to determine the two coeffi-
cients. Moreover, the present new model was applied to experi-
mental data from literature where the internal microstructures of
particle-reinforced composites were available with SEM images.
As a result, the present model best predicted effective thermal con-
ductivities of three types of particle-reinforced composites among
all the previous analytical models considered. Finally, we propose
an empirical equation to estimate an aspect ratio of aggregates at
a given volume fraction and conductivity ratio, and showed that
the present model enabled the prediction of effective thermal con-
ductivity of any particle-reinforced composites with reasonably
high accuracy even when their microstructures are unknown.
2. Comprehensive evaluation of previous models and their
asymptotic behaviors at extreme conditions

This section is devoted to the comprehensive evaluation of ele-
ven previous models that have frequently been used for the predic-
tion of keff. Prediction results of the models were compared with
experimental data from literature in three distinct ranges of the
ratio a defined by kp/km (1 < a < 100; 100 � a < 1000; a � 1000).
Note that the experimental data we considered here were selected
only within literature where kp and km were clearly reported [16–
28], and that all of the data correspond to the condition of
1 < a � 1700 and 0 � vf � 0.4.

Table 1 summarizes the prediction accuracy of each model in
terms of an average error E defined by Eq. (1) [29,30]:

E ¼ 1
N

XN
i¼1

kexp � kmodel

�� ��
kexp

� 100 ð1Þ

where N is the total number of experimental data considered, kexp is
an effective thermal conductivity measured by experiment, and
kmodel is the corresponding prediction data. In Table 1, the prediction
errors are highlighted by the change in the table cell color from
white to dark gray. The white cells indicate that the model predic-
tion error is less than 10%, the pale-gray cells denote 10–20% pre-
diction errors, and the dark-gray cells imply the most inaccurate
predictions with E > 20%. By counting the number of dark-gray cells
in each column of the table, one may intuitively notice that the pre-
diction errors tend to increase as the ratio a (� kp/km) increases
from the left to the right column, that is, from 1 < a < 100 to
100 � a < 1000 and a � 1000.

When the least conductive particles are considered as
1 < a < 100, Bruggeman’s asymmetric model is the most accurate
within 3% of error with respect to experimental data. Nine of the
eleven models prove to be acceptable in prediction accuracy with
E < 20%, whereas the parallel model and the co-continuous model
do not work properly, revealing 262% and 74% errors, respectively.
When 100 � a < 1000, only four of the eleven models can make it
within 20% error, and the models entirely experience a significant
decrease in the prediction performance. When a increases to over
1000, the performance of the models drastically degrades, leaving
behind only three models whose prediction errors are in the range
of 20–25%, that is, Cheng–Vachon’s model, Lewis–Nielsen’s model,
and Bruggeman’s asymmetric model.

To understand these peculiar but common behaviors of the pre-
vious models under high a conditions, we investigated the increas-
ing trends of a dimensionless conductivity of keff/km from the
model predictions when increasing kp/km ( = a) up to infinity. Based
on the results, the eleven models could be discriminated into two
groups showing two asymptotic behaviors termed as ‘a diverging
model’ and ‘a converging model.’ Fig. 1(a) shows the result of a par-
allel model as representative of the diverging model, where keff/km
denotes a very sharp increase without limitation, starting from a
slow and gradual increase. In Fig. 1(b), however, the Maxwell–
Eucken model shows a certain difference in that keff/km initially
increases but levels off and then remains almost constant even
when a � 1000. This type of model corresponds to the converging
model. Since no limited increase of thermal conductivity goes
against the experimental results, such diverging models including
a geometric mean model and a co-continuous model have been
ruled out for further consideration. In fact, the three diverging
models were the ones denoting unacceptably high prediction
errors (76–6036%) when a � 1000 in Table 1.

Of particular interest is seeing how the converging models
behave at the limit of a. Hence, we derived asymptotic functional
forms of the models by taking a to infinity in the original formulae
in Appendix A and summarizing them in Table 2. As expected, all of
the converged models in Table 2 do not depend on a anymore,
explaining the level-off limit. Although Bruggeman’s symmetric
model was classified under the converged models, its asymptotic
form indicates that there is a singular point in volume fraction
(see Table 2). When the volume fraction vf approaches 1/3, the
term of keff/km diverges irrespective of any other parameters. Thus,
this model was also excluded from further consideration.



Table 1
Summary of average errors between existing predictionmodels and experimental data from literature. This is divided into three
ranges of the thermal conductivity ratio. The table cells were shaded from white to dark gray in an attempt to visualize the
prediction errors.
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3. Derivation of a new simplified model

This section describes how to formulate a generalized function
so that it includes the effects of the aforementioned primary and
secondary factors. The formulation was started from an ideal cir-
cumstance where a spherical particle of radius rp is located in an
infinite matrix. Initially given a constant temperature gradient
rT0 to the matrix, the temperature field is distorted around the
particle, yielding the temperature gradient profile in a spherical
coordinate, as seen in Eq. (2) [31]:

rT ¼ rT0 þ rp
r

� �3 kp � km
kp þ 2km

3n̂n̂� I½ � � rT0

� rT0 þ K1 ~r; r1
!� �

� rT0 ð2Þ
where K1 is the operator that reflects the temperature gradient dis-
tortion arisen from the single particle, r! represents the position
vector to measure the temperature gradient, and n̂ is the radial unit
vector.

If N number of spherical particles exist in the matrix, the tem-
perature gradient becomes more complicated due to complex
inter-particle interactions, as seen in Eq. (3) [31]:

rT ¼ rT0 þ
XN
i¼1

K1 r!; ri
!� �

� rT0 þ
XN
i<j

K2 r!; ri
!
; rj
!� �

� rT0

þ
XN
i<j<k

K3 r!; ri
!
; rj
!
; rk
!� �

� rT0 þ � � � ð3Þ
where Kn represents n number of particles’ contribution to the tem-
perature gradient distortion, and ri

! is the position vector of the i-th
particles. To date, there have been few reports on K2, however their
proposed functional forms are not consistent and sometimes con-
troversial. Apart from that, there is no analytic form available for
K3 and higher-order terms. For simplicity, in this study, the temper-
ature gradient distortion is first approximated by neglecting K2 and
the higher-order terms in Eq. (3), and introducing an additional con-
stant C1 to consider those inter-particle interactions instead, as
shown in Eq. (4):

rT ffi rT0 þ C1

XN
i¼1

K1 r!; ri
!� �

� rT0 ð4Þ

Here, it is worth noting Maxwell–Eucken’s model, in which N
number of particles in a matrix were treated as an artificial spher-
ical composite of radius R comprising the particles [32]. According
to Maxwell’s approximation [33], at sufficiently large radial dis-
tances (r
 R), the temperature gradient rT can be simplified as
the superposition of the result from each particle, such that K1 in
Eq. (4) is simply replaced by its definition in Eq. (2) [31,32]. Hence,
Eq. (4) is now rewritten as:

rT ¼ rT0 þ C1N
rp
r

� �3 kp � km
kp þ 2km

3n̂n̂� I½ � � rT0 ð5Þ

Again, at the far field, the artificial spherical composite can be
seen as a single particle having a thermal conductivity of keff in



Fig. 1. Variations of keff/km with volume fraction and thermal conductivity ratio (a);
(a) Parallel model, which is divergent at high thermal conductivity ratio, (b)
Maxwell–Eucken’s model, which is convergent at high thermal conductivity ratio.

Table 2
Asymptotic forms of previous models at the extreme condition (a ? 1).

Model name Asymptotic
form

Model name Asymptotic
form

Series keff
km

! 1
1�v f

Zhou 1þv4=3
f

þv5=3
f

1�v f

Maxwell–Eucken 1þ2v f

1�v f

Bruggeman
asymmetric

1
1�v fð Þ3

Bruggeman
symmetric

1
1�3v f

Russell 1
1�v1=3

f

Cheng–Vachon 1
1�

ffiffiffiffiffi
1:5

p
v1=2
f

Hatta–Taya 1þ 2
3S11

þ 1
3S33

�1

� �
v f

1�v f

Lewis–Nielsen 1þAv f

1�wv f

Hamilton–Crosser 1þ n�1ð Þv f

1�v f
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an infinite matrix. Thus, the equation for the single-particle case,
that is, Eq. (2) can be extended to the many-particle problem by
replacing rp

3 and kp with R3 and keff, respectively, as:

rT ¼ rT0 þ R
r

� �3 keff � km
keff þ 2km

3n̂n̂� I½ � � rT0 ð6Þ

Equating Eqs. (5) and (6), an explicit equation for keff is readily
obtained as:

keff � km
keff þ 2km

¼ C1
Nr3p
R3

kp � km
kp þ 2km

ð7Þ

Here, recalling that Nrp3/R3 is equal to the volume fraction of parti-
cles vf, Eq. (7) is now rearranged with respect to keff/km as:
keff
km

¼ 1þ 2C1bv f

1� C1bv f
ð8Þ

where b represents (kp-km)/(kp + 2 km) and goes to unity at high
thermal conductivity limits (a?1). Under this limiting condition,
if the inter-particle interaction is neglected as C1 = 1 in Eq. (8), this
equation is readily reduced to the asymptotic function of the Max-
well–Eucken model in Table 2.

Recalling that Maxwell–Eucken’s asymptotic function and Eq.
(8) are valid only for spherical particles, the numerical value of 2
in Eq. (8) might relate to the spherical shape of particles. In addi-
tion, an apparent difference arises from the coefficient of vf in the
denominator per model in Table 2; 2 in the Maxwell–Eucken
model for spherical particles vs (n-1) in the Hamilton–Crosser
model or 2/(3S11) + 1/(3S33)-1 in the Hatta–Taya model dealing
with non-spherical particles. From this finding, the value of 2 in
Eq. (8) and in the definition of b is replaced with a shape coefficient
C2 in an attempt to extend Eq. (8) to non-spherical particles as:

keff
km

¼ 1þ C2C1bv f

1� C1bv f
ð9Þ

where b is now (kp-km)/(kp + C2km), and C2 is defined as a function of
aspect ratio (ra) of ellipsoidal (non-spherical) particles, as shown in
Eq. (10) [34].

C2 ¼ 2S�1
11 þ S�1

33

3
� 1;

S11 ¼ ra

2 r2a � 1
� �3

2
ra

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2a � 1

q
� cosh�1 rað Þ

� �
; S33 ¼ 1� 2S11

ð10Þ

In this way, Eq. (9) was developed to encompass the primary
factors and most of the secondary factors such as inter-particle
interaction and the non-spherical shape of particles, targeting
extreme (high a) conditions. The inter-particle aggregation effect
can readily be included in Eq. (9) through the coefficient of C2, as
long as the aggregates’ shape or the internal microstructure of
the composites is known. (Note also that Eq. (9) was developed
to be self-consistent.) For example, when a?1 is at a fixed vf, b
becomes independent of kp (or a), so does keff/km, irrespective of
the particles’ shape, as observed in Fig. 1(b). As another limiting
condition, when a? 1, b becomes zero, and thus Eq. (9) returns
keff = km.

The only exceptional factor not taken into account in Eq. (9) is
the contact (or interfacial) resistance that is also called Kapitza
resistance (Rk). The Kapitza resistance is measured by a length
scale defined by rk = Rkkm [35] and the rk is called Kapitza radius.
The Kapitza resistance creates an adverse effect in a manner that
inhibits heat conduction at the particle-matrix interface, so that
it strongly depends on how much interfaces are available. As par-
ticles become larger at a fixed volume fraction, the Kapitza resis-
tance will play a limited role along with a decrease in total
interface area. According to Every et al. [35], a ratio of rk/rp can
be regarded as a measure of relative significance of Kapitza resis-
tance. For instance, when rk/rp � 0.1, the Kapitza resistance is
approximately negligible.

Meanwhile, normally micron-sized conductive particles are
added in a less-conductive polymer matrix for improving heat dis-
sipation. Given a typical range of interfacial resistance (2–100 �
10�9 m2K/W) at room temperature [36], the corresponding Kapitza
radius was calculated as ranging from 10�10 to 10�8 m for a typical
polymer matrix (�10�1 W/m K). Thus, the Kapitza radius is now
several orders of magnitudes smaller than the radius of the micron
particles (10�7–10�4 m), suggesting that the contact resistance can
be neglected for typical electronics applications [37].
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4. Numerical simulation for determination of a universal
interaction coefficient

In this study, a numerical simulation was additionally per-
formed to determine the interaction coefficient C1 in Eq. (9) by pro-
viding an ideal reference system. A three-dimensional Lattice
Boltzmann Method (3D-LBM) was used to calculate the effective
thermal conductivity of this system. The calculation was made
on a cubic grid system (100 � 100 � 100) employing a D3Q15 lat-
tice scheme [10].

For the validation of the homemade LBM code, we first consid-
ered two ideal systems (series and parallel systems), the analytic
solutions of which are well known. When vf varies from 0.1 to
0.9 at a = 100, the mean calculation errors for the two systems
are as small as 2.37% and 0.7%, respectively (see Fig. S1 in Supple-
mentary material). We also considered another reference system
where a spherical particle of radius rp was positioned in the center
of a cubic domain. The cubic domain was digitized with a grid of
100 � 100 � 100, and a periodic boundary condition was given to
the four lateral surfaces of the cubic domain. Hence, the cubic
domain may be extended (as a building block) to a large scale at
which spherical particles are uniformly distributed in a continuous
matrix without overlapping. The temperatures at the top and the
bottom surfaces of the cubic domain were fixed, maintaining a
constant temperature difference of DT = 25 K. The radius of the
sphere was adjusted relative to the size of the cubic domain so
as to reflect the volume fraction of the particle.

When increasing vf from 0.1 to 0.45, the LBM simulation results
are presented with two solid symbols in Fig. 2, corresponding to
the cases of a = 100 and 1000. Then, the present model of Eq. (9)
was applied for these two sets of data, yielding C1 = 1.12 for the
best fit. Since particles are spherical in this case, the shape factor
C2 is simply 2. In Fig. 2, the predicted results by the present model
are clearly in better agreement with the LBM results compared
with the Maxwell–Eucken model predictions, denoting mean
errors of 2.93% and 4.10% at a = 100 and 1000, respectively. In
the figure, the mean errors of the Maxwell–Eucken model were
8.88% and 11.12%. It is interesting to see that their prediction error
grew with increasing vf. This might be attributed to the fact that
their model does not reflect the effect of inter-particle interactions
that will be strengthened at higher vf. It is also worth noting that
the mean errors of the present model are much lower than the
16.96% and 20.41% of the Cheng–Vachon model, the 27.45% and
Fig. 2. Comparison of the present model predictions with numerical results from
3D-LBM at two thermal conductivity ratios. Numerical results are marked with
circles (d) in the case of a = 100, and diamonds (r) in the case of a = 1000. For
reference, prediction results by Maxwell–Eucken model are shown with a dot-dash
line and a dotted line for the two cases.
27.04% of the Lewis–Nielsen’s model, and the 15.15% and 16.40%
of Bruggeman’s asymmetric model.

It was shown that the error of each model increased with the
rise of vf. In particular, the errors at vf = 0.45 between the results
of 3D-LBM and conventional models were 15–81% at a = 100 and
14–80% at a = 1000. With the present model, the error was reduced
to 7.40% and 12.58%, respectively, showing the lowest value, but
this model tends to slightly under-predict the effective thermal
conductivity, so it should be used with care at vf � 0.4.

In addition, this might raise a validity issue related to the con-
stant treatment of C1 particularly at high volume fractions, because
the inter-particle interaction is likely strengthened with increasing
vf. However, note that the value of C1 was resulted from the LBM
simulation dataset in a range of 0 < vf � 0.4. This means that the
result of C1 = 1.12 might be regarded as an average impact of the
interaction over the entire range of vf. Particularly at high volume
fractions where particles are frequently aggregated, the constant
treatment of C1 might not be appropriate. But, we speculated that
this aggregation that maximizes the inter-particle interaction was
additionally treated by another factor of C2. Eq. (9) shows that C2
appears as a product of C1 in the numerator of Eq. (9), which sug-
gests that the C2 plays an action of supplementing the C1 when par-
ticle aggregation occurs.

Let us describe further about physical significance of the
obtained interaction coefficient (C1 = 1.12). Jeffrey [38] studied
the interaction between pairs of spherical particles that are ran-
domly distributed in a matrix, and derived the following analytic
model.

keff
km

¼ 1þ 3bv f þ F bð Þv2
f þ O v3

f

� �
ð11Þ

Here, b is calculated by (kp-km)/(kp + 2km). The coefficient F(b) of
the quadratic term of vf is zero at a = 1 and becomes close to 4.51
after a monotonic increase when a increases up to 1000. To com-
pare with Eq. (11), Eq. (9) may be expressed as a series function
when C1vf < 1, as seen in Eq. (12).

keff
km

¼ 1þ 1þ C2ð ÞC1bv f þ 1þ C2ð Þ C1bv f

� �2
þ 1þ C2ð Þ C1bv f

� �3 þ � � � ð12Þ
One may notice a remarkable similarity between Eqs. (11) and

(12). Substituting the aforementioned results (C1 = 1.12; C2 = 2 for
spherical particles; b ffi 1 at a = 1000) into Eq. (12), the coefficients
of vf and vf2 in Eq. (12) become 3.36 and 3.76, which are in reason-
able agreement with 3 and 4.51 in Eq. (11), respectively. Taking
these promising results into account, we believe that our model
enables a reasonable prediction of keff even with the practical
approximation of C1 = 1.12.

5. Validation of the model prediction with empirically-driven
shape coefficients

Fig. 3 shows the comparison of our model prediction to Carson’s
experimental results [39]. Carson [39] measured effective thermal
conductivities of guar gum matrices (carbohydrate polymer gel,
km = 0.6 W/m K) mixed with aluminum particles (kp = 209 W/m K)
in a range of vf = 0–0.6. Since the aluminum particles had an aspect
ratio of unity with 5 mm diameter and 5 mm height, the particles
were approximated to be spherical, yielding C2 = 2 in accordance
with Eq. (10). Given a constant interaction coefficient (C1 = 1.12),
we estimated effective thermal conductivities for a = 348 until
vf � 0.5. As shown in Fig. 3, our model predictions are in good
agreement with their experimental data, in which the mean pre-
diction error is as small as �6%. It might be concluded that
C1 = 1.12 is a reasonable approximation unless the particles get clo-



Fig. 3. Comparison of experimental data [38] and the model prediction in which
spherical particles were randomly distributed in a matrix without aggregation
(km = 0.6 W/m K, kp = 209 W/m K, C1 = 1.12, C2 = 2). Experimental data are marked
with solid circles (d).
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ser too much at very high volume fractions. In the rest of this work,
C1 = 1.12 was used consistently.

It is well known that particle aggregation can significantly influ-
ence the effective thermal conductivity of a particle-reinforced
matrix [8,24,40]. In our model, the aggregation effect is imple-
mented through the shape coefficient (C2), which is a function of
an aspect ratio of aggregates. However, it is not straightforward
to obtain aspect ratios of aggregates theoretically, because aggre-
gation is a complicated process depending on multiple experimen-
tal parameters such as volume fraction of particles and sample
fabrication parameters. Thus, we extracted an average aspect ratio
Fig. 4. Experimental data [19] and model predictions with SEM image analysis.
Shape coefficient (C2 = 5.79) was obtained from the image analysis of the sample.
(a) SEM image of the sample (PS + AlN, vf = 0.25) where dark grains are PS matrix
and white streaks denote aggregated particles of AlN, (b) Identified particle
aggregates each enclosed with a line following image analysis, (c) Comparisons of
the experimental data and the model predictions (km = 0.15 W/m K, kp = 160
W/m K). Experimental data were marked with solid circles (d). (Reprinted from
Composites: Part A, 33, Yu et al., Thermal conductivity of polystyrene-aluminum
nitride composite, 289–292, Copyright (2002), with permission from Elsevier).

Fig. 5. Experimental data [20] and model predictions (km = 0.26 W/m K, kp = 65
W/m K). Experimental data were marked with solid circles (d). Shape coefficients
were obtained from the image analysis for the sample (HDPE + BN, vf = 0.35).
(a) Melted mix (C2 = 2.77), (b) Powder mix (C2 = 3.38).
of aggregates from scanning electron microscope (SEM) images
available from literature [19,20] and used the resulting value of
C2 for predicting effective thermal conductivities, and then com-
pared this with the experimental data.

Yu et al. [19] measured effective thermal conductivities of a
polystyrene matrix (km = 0.15 W/m K) with aluminum nitride par-
ticles (kp = 160 W/m K) by changing the volume fraction of parti-
cles. Fig. 4(a) shows the SEM image of the sample prepared at
vf = 0.25. The large dark grains are the matrix particles, whereas
the white streaks surrounding the matrix particles denote aggre-
gated particles. Using ImageJ ver. 1.51j8, the SEM image was ana-
lyzed to extract shape information from the aggregates. By
adjusting the image contrast, we could identify each of the white
streaks, as presented in Fig. 4(b). Treating any enclosed area as a
single aggregate, we obtained the corresponding cross-section area
(S) and maximum length (lmax) per aggregate. Aggregates (white
spots) that are connected to the boundaries of the image were
excluded from the analysis. Those irregular-shaped aggregates
were then approximated to ellipsoids with different aspect ratios.
By applying Eqs. (13a) and (13b), an aspect ratio of each aggregate
(ra,i) and an area-weighted average aspect ratio (ra) could respec-
tively be obtained and then plugged in Eq. (10) to calculate a shape
coefficient (C2). As a result, the average shape coefficient for Fig. 4
(a) was calculated to be C2 � 5.79 with an average aspect ratio (ra)
of 4.63.

ra;i ¼ 4Si
pl2max;i

ð13aÞ



Table 3
Comparison between experimental data and prediction results from the previous models and our model. Experimental data were taken from the literature in which Zhou et al.
[20] prepared the composite sample by two different methods according to the treatment of the matrix: ‘melted mix’ and ‘powder mix.’ The predictions of Lewis–Nielsen and our
models were implemented with the shape coefficients determined from SEM image analysis.

Yu et al. [19] Zhou et al. [20]
Melted mix

Zhou et al. [20]
Powder mix

Average error (E) Error at v f = 0.25 Average error (E) Error at v f = 0.35 Average error (E) Error at v f = 0.35

Our model 6% 15% 6% 0.1% 4% 5%
Cheng–Vachon 22% 39% 11% 2% 8% 12%
Lewis–Nielsen 29% (ra = 4.63) 46% (ra = 4.63) 5% (ra = 2.27) 14% (ra = 2.27) 15% (ra = 2.85) 25% (ra = 2.85)
Bruggeman asymmetric 27% 44% 3% 4% 9% 10%

Fig. 6. Scatter plot of experimental data (a � 100) against particles’ volume
fraction, where open circles are experimental data with a � 1000, and filled circles
are experimental data with 100 � a � 1000. The solid and dashed lines represent
the predictions using the present model as a guidance.

Fig. 7. Comparison between all experimental data (kexp) and (previous & present)
model predictions (kmodel); (a) Present model vs experiments, (b) previous models
vs experiments. Solid line represents the perfect prediction as a reference where
model predictions coincide with experimental data. Dashed line represents the
border where the prediction error between model predictions and experimental
data is ±30%.
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ra ¼
X
i¼1

Sira;i

,X
i¼1

Si ð13bÞ

where i is an index of aggregates in the SEM images.
Applying C1 = 1.12 and C2 = 5.79 (at ra = 4.63) to Eq. (9), effective

thermal conductivities were calculated at various volume fractions
ranging from 0 to 0.5. Fig. 4(c) proves that our model predictions
are in much better agreement with the experimental data than
the previous models. Note that the mean error of our model is only
�6% in the entire range of volume fractions, while the other models
show more than 40% error. In particular, the superiority of our
model may be highlighted when compared with the Lewis–Nielsen
model in which the same shape coefficient was used.

Likewise, this model validation process was repeated for Zhou
et al.’s experimental data [20] in order to expand the validity of
our model prediction. Their composite sample was made of boron
nitride particles (kp = 65W/m K) in a high density polyethylene
matrix (km = 0.26 W/m K). Zhou et al. [20] attempted to change
the internal structures of the sample by mixing the particles with
matrix powder that had melted or was still in solid phase. They
provided two SEM images for the samples prepared by two differ-
ent mixing methods (referred to as ‘melted mix’ and ‘powder mix’)
at vf = 0.35. The aforementioned image analysis was performed to
obtain a shape coefficient for each sample.

Fig. 5(a) and (b) show the comparison of our model prediction
with C2 = 2.77 (ra = 2.27) and C2 = 3.38 (ra = 2.85) to the experimen-
tal data for the samples prepared by the ‘melted mix’ and by the
‘powder mix,’ respectively. Note that the two shape coefficients
resulted from the image analysis for the two cases. We also com-
pared our prediction models with the previous models. The predic-
tion errors of the whole models are summarized in Table 3. Overall,
all the models showed good prediction with an average error
below 15%, unlike the case of Yu et al.’s sample [19]. This may
result from a smaller aspect ratio of aggregates (lowering C2) as
well as a lower thermal conductivity of particles (lowering a) in
Zhou et al.’s samples [20], both of which reduce the relative contri-
bution of aggregation to an effective thermal conductivity. It
should be recalled that in Table 1, the three previous models con-
sidered in Fig. 5 worked well when a < 1000, and Zhou et al.’s sam-
ple [20] has a low a ( = 250) relative to Yu et al.’s sample (a = 1066)
[19].

Another thing to note is that our model yielded the best predic-
tions at vf = 0.35 where the shape coefficients were obtained
directly from the SEM images, in contrast to the Lewis–Nielsen
model presenting the worst prediction accuracy with the same
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shape coefficient. All of these findings emphasize the significance
of considering aggregate microstructures in the prediction of effec-
tive thermal conductivity, and highlight that our model is the most
promising as long as the internal structures of samples are avail-
able. The question of what will happen if the internal structure
of a target sample is unknown may be raised here. This is an
important issue for practicality because a priori prediction of effec-
tive thermal conductivity is sometimes required in a preliminary
design stage.

To facilitate the utility of our model, we attempted to derive an
empirical correlation between key experimental parameters (vol-
ume fraction, vf, and thermal conductivity ratio, a) and aspect ratio.
We collected as much experimental data as we were aware of from
literature, and used them for the derivation of correlation when
0 � vf � 0.4 and a � 100 [16–26,28]. In Fig. 6, the experimental
datasets were divided into two groups of 100 � a < 1000 and
a � 1000 simply for convenience, and presented with solid circles
and open circles, respectively. At first, each dataset was best fitted
based on our model by tuning an aspect ratio at each volume frac-
tion under the approximation of a = 100 or 1000, and the resulting
fitted curve for each group was also presented with solid or dotted
lines in Fig. 6, respectively. Although the experimental data were
scattered considerably, the two curves seemingly represent the
trends of the experimental data quite well. The fitting process
was then expanded for the whole experimental data without the
approximation of a, which finally provides an empirical equation
to express an apparent aspect ratio as a function of the two inde-
pendent parameters (vf and a) as:

ra ¼ 1þ 0:48 logað Þ2:17v0:30
f ð14Þ

Eq. (14) was utilized to estimate a shape coefficient (C2) corre-
sponding to each data point in Fig. 6. Based on the set of C2 and
C1 = 1.12, the values of keff/km were calculated by our model and
compared with the corresponding values from the experiments
in Fig. 7(a). The scatter plot in Fig. 7(a) displays how much the
model predictions deviated from the experimental measurements.
In the figure, a solid line having a slope of unity denotes the perfect
prediction as a reference line, whereas the two dashed lines repre-
sent an error range of ±30%. Note that most of the predicted data
safely fall between the dashed lines, revealing an average error of
�11% as a whole. In contrast, the other models show a strong ten-
dency of underestimation when effective thermal conductivity
increases beyond keff/km � 2. This strongly supports our model
being the most promising for a priori prediction of an effective
thermal conductivity with lack of structural information of
Appendix A. Summary of representative previous analytical models

Model names/grouping Formulations

Parallel model [41]/Group A keff ¼ v f kp þ 1� v f
� �

km
Series model [41]/Group A k�1

eff ¼ v f k
�1
p þ 1� v f

� �
k�1
m

Geometric mean model
[41]/Group A

keff ¼ kv f
p k1�v f

m

Maxwell–Eucken model
[32,41]/Group A

keff ¼ km
1þ2bv f

1�bv f
where b ¼ kp�km

kpþ2km

Bruggeman symmetric
model [5]/Group A

kp�keff
kpþ2keff

þ km�keff
kmþ2keff

¼ 0

Cheng–Vachon model [42]/
Group B

when kp > km,

1
keff

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C km�kpð Þ kmþB kp�kmð Þ½ �p ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmþB kp�kðpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmþB kp�kðp

where B ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
3v f =2

p
;C ¼ �4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2= 3v f

� �q
aggregates, and can be widely utilized in a variety of experimental
conditions where other models are not applicable.

6. Conclusion

In this study, a new analytical model was developed to establish
a practical and more reliable means of prediction of an effective
thermal conductivity of a particle-reinforced composite material,
particularly in electronics applications where high-conductivity
particles are normally added in a polymer matrix. Comprehensive
evaluation of the existing models was performed with increasing
particle conductivity, and this resulted in an interesting asymptotic
behavior of the previous models at the extreme condition. Based
on Maxwell’s approximation scheme, a new analytical model was
derived not only to incorporate the primary factors and most of
the secondary factors affecting the heat conduction with simplifi-
cation, but also to be consistent with the asymptotic functional
forms at the limiting condition. An interaction coefficient (C1)
was introduced for reflecting the inter-particle interaction among
the secondary factors and was determined to be 1.12 through
3D-LBM simulations, revealing that the value of C1 is practically
quasi-universal. Moreover, a shape coefficient (C2) characterizing
the particle shape and aggregation was obtained through image
analysis for SEM images of samples. With these key coefficients,
the present model was systematically validated with a multitude
of experimental data from literature, highlighting its high predic-
tion accuracy and applicability to extreme conditions (e.g., with
very high-conductivity particles at high volume fractions) where
other existing models are not suitable for use. For further facilitat-
ing the utility of the present model, an empirical correlation
between experimental parameters and a shape coefficient was
derived taking into consideration a large number of existing exper-
imental data from literature. We demonstrated that this elaborated
correlation is powerful, enabling a priori prediction of effective
thermal conductivity within ±30% prediction error even in elec-
tronics application.
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Comments

Vertically laminated structure
Horizontally laminated structure

Internal conductive networks (percolation)

Well-separated spheres without
interaction
Significant increase for vf > 1/3, high a and
isotropic spherical particles

ffiffiffiffiffi
mÞþB

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C km�kpð Þpffiffiffiffiffi

mÞ�B
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C km�kpð Þp þ 1�B

km

Parabolic (2nd-order polynomial)
distribution of particles in space



Appendix A (continued)

Model names/grouping Formulations Comments

Lewis–Nielsen model [43]/
Group C

keff ¼ km
1þAbv f

1�wbv f

where b ¼ kp�km
kpþAkm

;w ¼ 1þ 1�v f ;max

v2
f ;max

� �
v f ;A ¼ kE � 1

Analogy from elastic moduliA: shape
parameter
kE: Einstein coefficient
v f ;max: packing fraction

Zhou model [44]/Group D keff ¼ kpkm
vdkmþ 1�vdð Þkp

v f

vd
cos h
� �2 þ cos h� v f

vd
cos h
� �2h i

km

for simple and cubic lattice structure h ¼ 0; vd ¼ v1=3
f

� � Heat-transfer passages and orientation in
continuous matrix H: angle between the
axis of heat-transfer passages and the
direction defined by the thermal flow vd:
volume fraction of fillers in a heat-transfer
passage (vd – vf)

Bruggeman asymmetric
model [5]/Group A

1� v f ¼ kp�keff
kp�km

km
keff

� �1=3 Spherical particles, continuous matrix, and
particle interaction

Russell model [45]/Group A
keff ¼ km

v2=3
f

þkm
kp

1�v2=3
f

� �
v2=3
f

�v fþkm
kp

v fþ1�v2=3
f

� �
2
4

3
5 Cube-shaped particles with the same size

Co-continuous model [46]/
Group A

keff ¼ Ks
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8Kp

Ks

q
� 1


 �
where KP ¼ v f kp þ 1� v f

� �
km;K

�1
s ¼ v f k

�1
p þ 1� v f

� �
k�1
m

Isotropic material where all phases are
continuous
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Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at https://doi.org/10.1016/j.ijheatmasstransfer.
2018.11.107.
References

[1] X. Chen, Y. Su, D. Reay, S. Riffat, Recent research developments in
polymer heat exchangers – a review, Renew. Sustain. Energy Rev. 60 (2016)
1367–1386.

[2] A.R.J. Hussain, A.A. Alahyari, S.A. Eastman, C. Thibaud-Erkey, S. Johnston, M.J.
Sobkowicz, Review of polymers for heat exchanger applications: factors
concerning thermal conductivity, Appl. Therm. Eng. 113 (2017) 1118–1127.

[3] D.J. Kim, M.J. Jo, S.Y. Nam, A review of polymer–nanocomposite electrolyte
membranes for fuel cell application, J. Ind. Eng. Chem. 21 (2015) 36–52.

[4] X. Lu, G. Xu, Thermally conductive polymer composites for electronic
packaging, J. Appl. Polym. Sci. 65 (13) (1997) 2733–2738.

[5] R. Prasher, Thermal interface materials: historical perspective, status, and
future directions, Proc. IEEE 94 (8) (2006) 1571–1586.

[6] A.L. Moore, L. Shi, Emerging challenges and materials for thermal management
of electronics, Mater. Today 17 (4) (2014) 163–174.

[7] X. Huang, P. Jiang, T. Tanaka, A review of dielectric polymer composites with
high thermal conductivity, IEEE Electr. Insul. Mag. 27 (4) (2011) 8–16.

[8] B. Chen, H. Chen, V.V. Ginzburg, Y. Yang, J. Yang, W. Liu, Y. Huang, L. Du,
Thermal conductivity of polymer-based composites: Fundamentals and
applications, Prog. Polym. Sci. 59 (2016) 41–85.

[9] Y. Xu, K. Yagi, Automatic FEM model generation for evaluating thermal
conductivity of composite with random materials arrangement, Comput.
Mater. Sci. 30 (3) (2004) 242–250.

[10] M. Wang, N. Pan, Predictions of effective physical properties of complex
multiphase materials, Mater. Sci. Eng. R 63 (1) (2008) 1–30.

[11] M. Aadmi, M. Karkri, L. Ibos, M.E. Hammouti, Effective thermal conductivity
of random two-phase composites, J. Reinf. Plast. Compos. 33 (1) (2014)
69–80.

[12] T. Oppelt, T. Urbaneck, H. Böhme, B. Platzer, Numerical investigation of
effective thermal conductivity for two-phase composites using a discrete
model, Appl. Therm. Eng. 115 (2017) 1–8.

[13] S.V. Syrodoy, G.V. Kuznetsov, N.Y. Gutareva, V.V. Salomatov, The efficiency of
heat transfer through the ash deposits on the heat exchange surfaces by
burning coal and coal-water fuels, J. Energy Inst. 91 (2018) 1091–1101.

[14] L. Loh, C. Chua, W. Yeong, J. Song, M. Mapar, S. Sing, Z. Liu, D. Zhang, Numerical
investigation and an effective modelling on the Selective Laser Melting (SLM)
process with aluminium alloy 6061, Int. J. Heat Mass Transf. 80 (2015) 288–
300.

[15] P. Peyre, Y. Rouchausse, D. Defauchy, G. Régnier, Experimental and numerical
analysis of the selective laser sintering (SLS) of PA12 and PEKK semi-
crystalline polymers, J. Mater. Process. Technol. 225 (2015) 326–336.

[16] C.P. Wong, R.S. Bollampally, Thermal conductivity, elastic modulus, and
coefficient of thermal expansion of polymer composites filled with ceramic
particles for electronic packaging, J. Appl. Polym. Sci. 74 (14) (1999) 3396–
3403.

[17] D.W. Sundstrom, Y. Lee, Thermal conductivity of polymers filled with
particulate solids, J. Appl. Polym. Sci. 16 (12) (1972) 3159–3167.

[18] H. Tu, L. Ye, Thermal conductive PS/graphite composites, Polym. Adv. Technol.
20 (1) (2009) 21–27.

[19] S. Yu, P. Hing, X. Hu, Thermal conductivity of polystyrene–aluminum nitride
composite, Compos. A Appl. Sci. Manuf. 33 (2) (2002) 289–292.

[20] W. Zhou, S. Qi, Q. An, H. Zhao, N. Liu, Thermal conductivity of boron nitride
reinforced polyethylene composites, Mater. Res. Bull. 42 (10) (2007) 1863–
1873.

[21] A. Boudenne, L. Ibos, M. Fois, J.C. Majesté, E. Géhin, Electrical and thermal
behavior of polypropylene filled with copper particles, Compos. A Appl. Sci.
Manuf. 36 (11) (2005) 1545–1554.

[22] I. Krupa, I. Chodák, Physical properties of thermoplastic/graphite composites,
Eur. Polym. J. 37 (11) (2001) 2159–2168.

[23] Y. Agari, A. Ueda, M. Tanaka, S. Nagai, Thermal conductivity of a polymer filled
with particles in the wide range from low to super-high volume content, J.
Appl. Polym. Sci. 40 (5) (1990) 929–941.

[24] Y. Agari, A. Ueda, S. Nagai, Thermal conductivities of composites in several
types of dispersion systems, J. Appl. Polym. Sci. 42 (6) (1991) 1665–1669.

[25] P. Bujard, J.P. Ansermet, Thermally conductive aluminium nitride-filled epoxy
resin (for electronic packaging), in: Fifth Annual IEEE Semiconductor Thermal
and Temperature Measurement Symposium, 1989, pp. 126–130.

[26] I. Krupa, I. Novák, I. Chodák, Electrically and thermally conductive
polyethylene/graphite composites and their mechanical properties, Synth.
Met. 145 (2) (2004) 245–252.

[27] D.M. Liu, W.H. Tuan, Microstructure and thermal conduction properties of
Al2O3-Ag composites, Acta Materialia 44 (2) (1996) 813–818.

[28] A. Boudenne, L. Ibos, M. Fois, E. Gehin, J. Majeste, Thermophysical properties of
polypropylene/aluminum composites, J. Polym. Sci., Part B: Polym. Phys. 42 (4)
(2004) 722–732.

[29] S.C. Cheng, R.I. Vachon, A technique for predicting the thermal conductivity of
suspensions, emulsions and porous materials, Int. J. Heat Mass Transf. 13 (3)
(1970) 537–546.

[30] J.K. Carson, J. Wang, M.F. North, D.J. Cleland, Effective thermal conductivity
prediction of foods using composition and temperature data, J. Food Eng. 175
(2016) 65–73.

[31] S. Torquato, Random Heterogeneous Materials, first ed., Springer, New York,
2002, pp. 460–488.

[32] J.K. Carson, S.J. Lovatt, D.J. Tanner, A.C. Cleland, Thermal conductivity bounds
for isotropic, porous materials, Int. J. Heat Mass Transf. 48 (11) (2005) 2150–
2158.

[33] J.C. Maxwell, A Treatise on Electricity and Magnetism, first ed., Clarendon
Press, Oxford, 1873.

[34] H. Hatta, M. Taya, Effective thermal conductivity of a misoriented short fiber
composite, J. Appl. Phys. 58 (1985) 2478–2486.

[35] A.G. Every, Y. Tzou, D.P.H. Hasselman, R. Raj, The effect of particle size on the
thermal conductivity of ZnS/diamond composites, Acta Metallurgica Et
Materialia 40 (1) (1992) 123–129.

[36] P.E. Hopkins, L.M. Phinney, J.R. Serrano, T.E. Beechem, Effects of surface
roughness and oxide layer on the thermal boundary conductance at
aluminum/silicon interfaces, Phys. Rev. B 82 (8) (2010).

https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.107
https://doi.org/10.1016/j.ijheatmasstransfer.2018.11.107
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0005
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0005
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0005
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0010
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0010
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0010
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0015
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0015
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0020
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0020
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0025
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0025
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0030
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0030
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0035
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0035
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0040
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0040
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0040
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0045
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0045
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0045
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0050
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0050
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0055
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0055
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0055
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0060
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0060
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0060
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0065
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0065
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0065
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0070
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0070
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0070
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0070
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0075
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0075
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0075
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0080
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0080
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0080
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0080
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0085
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0085
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0090
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0090
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0095
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0095
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0100
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0100
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0100
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0105
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0105
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0105
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0110
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0110
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0115
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0115
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0115
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0120
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0120
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0130
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0130
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0130
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0135
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0135
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0140
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0140
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0140
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0145
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0145
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0145
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0150
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0150
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0150
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0155
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0155
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0155
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0160
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0160
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0160
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0165
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0165
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0165
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0170
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0170
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0175
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0175
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0175
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0180
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0180
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0180


872 J. Kim et al. / International Journal of Heat and Mass Transfer 131 (2019) 863–872
[37] W. Evans, R. Prasher, J. Fish, P. Meakin, P. Phelan, P. Keblinski, Effect of
aggregation and interfacial thermal resistance on thermal conductivity of
nanocomposites and colloidal nanofluids, Int. J. Heat Mass Transf. 51 (5)
(2008) 1431–1438.

[38] D.J. Jeffrey, Conduction through a random suspension of spheres, Proc. Roy.
Soc. A 335 (1602) (1973) 355–367.

[39] J.K. Carson, Measurement and modelling of the thermal conductivity of
dispersed aluminium composites, Int. Commun. Heat Mass Transfer 38 (8)
(2011) 1024–1028.

[40] I.A. Tsekmes, R. Kochetov, P.H.F. Morshuis, J.J. Smit, Thermal conductivity of
polymeric composites: a review, in: 2013 IEEE International Conference on
Solid Dielectrics, 2013, pp. 678–681.

[41] D.S. McLachlan, M. Blaszkiewicz, R.E. Newnham, Electrical resistivity of
composites, J. Am. Ceram. Soc. 73 (8) (1990) 2187–2203.
[42] S.C. Cheng, R.I. Vachon, The prediction of the thermal conductivity of two and
three phase solid heterogeneous mixtures, Int. J. Heat Mass Transf. 12 (3)
(1969) 249–264.

[43] L.E. Nielsen, The thermal and electrical conductivity of two-phase systems,
Ind. Eng. Chem. Fundam. 13 (1) (1974) 17–20.

[44] H. Zhou, S. Zhang, M. Yang, The effect of heat-transfer passages on the effective
thermal conductivity of high filler loading composite materials, Compos. Sci.
Technol. 67 (6) (2007) 1035–1040.

[45] H.W. Russell, Principles of heat flow in porous insulators, J. Am. Ceram. Soc. 18
(1935) 1–5.

[46] J. Wang, J.K. Carson, M.F. North, D.J. Cleland, A new structural model of
effective thermal conductivity for heterogeneous materials with co-
continuous phases, Int. J. Heat Mass Transf. 51 (9) (2008) 2389–2397.

http://refhub.elsevier.com/S0017-9310(18)34218-2/h0185
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0185
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0185
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0185
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0190
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0190
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0195
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0195
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0195
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0205
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0205
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0210
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0210
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0210
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0215
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0215
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0220
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0220
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0220
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0225
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0225
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0230
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0230
http://refhub.elsevier.com/S0017-9310(18)34218-2/h0230

	Toward high-accuracy and high-applicability of a practical model to predict effective thermal conductivity of particle-reinforced composites
	1 Introduction
	2 Comprehensive evaluation of previous models and their asymptotic behaviors at extreme conditions
	3 Derivation of a new simplified model
	4 Numerical simulation for determination of a universal interaction coefficient
	5 Validation of the model prediction with empirically-driven shape coefficients
	6 Conclusion
	Conflict of interest
	Acknowledgement
	Appendix A Summary of representative previous analytical models
	Appendix B Supplementary material
	References


